§1.5 The De Witt-Faddeev-Popor Method
Want to derive path integral formula respecting Lorentz invariance.
Consider

$$
\begin{equation*}
\mathcal{I}=\int\left[\prod_{n, x} d \phi_{n}(x)\right] \mathscr{G}[\phi] B[f(\phi)] \operatorname{Det} \mathcal{F}[\phi] \tag{1}
\end{equation*}
$$

where $\phi_{n}\left(x_{x}\right)$ are set of gauge and matter fields $\prod_{n i x} d \phi_{n}(x)$ is volume element
$\mathcal{G}_{g}[\phi]$ is functional satisfying gauge inv. condition

$$
\mathscr{G}\left[\phi_{\lambda}\right] \prod_{n, x} d \phi_{\lambda n}(x)=\mathscr{G}[\phi] \prod_{n, x} d \phi_{n}(x)
$$

$f_{\alpha}[\phi ; x]$ is "gauge fixing functional"
$A_{\alpha 3}(x)$ is previous result (not gauge inv.) $B[f]$ is functional of general functions $f_{x}(x)$ F is matrix $\quad F_{\alpha x, \beta y}[\phi]=\left.\frac{\delta f_{\alpha}\left[\phi_{\lambda i}\right]}{\delta \lambda_{\beta}(x)}\right|_{\lambda=0}$

Our previous result

$$
\begin{gather*}
\int\left[\prod_{l, x} d \psi_{l}(x)\right]\left[\prod_{\alpha, \mu, x} d A_{\alpha \mu}(x)\right] \times O_{A} O_{B} \cdots \exp \{i I+\varepsilon \text { terms }\} \\
\times \prod_{x, \alpha} \delta\left(A_{\alpha \beta}(x)\right) \tag{2}
\end{gather*}
$$

is a special case of (1):

$$
\begin{aligned}
& f_{\alpha}[A, \psi ; x]=A_{\alpha 3}(x), \\
& B[f]=\prod_{x, \alpha} \delta\left(f_{\alpha}(x)\right) \\
& \xi[A, \psi]=\exp \{i I+\varepsilon \text { terms }\} O_{A} O_{B} \cdots, \\
& \prod_{n, x} d \phi_{n}(x)=\left[\prod_{l, x} d \psi_{e}(x)\right]\left[\prod_{\alpha, m, x} d A_{\alpha}^{\mu}(x)\right]
\end{aligned}
$$

\rightarrow (1) and (2) are equal aside from the factor Det $\bar{F}[\phi]$
if $A_{\alpha}^{3}(x)=0$ then gauge toff. gives

$$
\begin{aligned}
& A_{\alpha}^{j}(x)=\partial_{3} \lambda_{\alpha}(x)=\int d^{4} y \lambda_{\alpha}(y) \partial_{3} \delta^{4}(x-y) \\
\rightarrow & \tilde{f}_{\alpha x, \beta y}[\phi]=\delta_{\alpha \beta} \partial_{3} \delta^{4}(x-y)
\end{aligned}
$$

and is field-independent!
\rightarrow irrelevant for path integral (simple nomaliaction factor)
Eploying the formula (1), we can now freely change the gauge.
Theorem:
Integral (1) is independent of $f_{\alpha}[\phi ; x]$, and depends on the choice of the functional $B[f]$ andy through irrelevant constant factor.

Proof:
replace $\phi \rightarrow \phi_{\lambda}$ (gauge transformed) with $\Lambda^{\alpha}(x)$ arbitrary gauge tiff. parameter

$$
\begin{aligned}
I & =\int \underbrace{\left[\prod_{n, x} \phi_{n n}(x)\right] \mathscr{G}\left[\phi_{\lambda}\right]}_{\text {gauge inv. }} B\left[f\left[\phi_{n}\right]\right] \operatorname{Det} \tilde{f}\left[\phi_{n}\right] \\
& \left.=\iint \prod_{n, x} \phi_{n}(x)\right] \mathscr{G}[\phi] B\left[f\left(\phi_{1}\right)\right] \operatorname{Det} \mathcal{f}\left[\phi_{n}\right]
\end{aligned}
$$

Since $\Lambda^{\alpha}(x)$ was arbitrary, we can integrate over it:
where

$$
\rightarrow \widetilde{f}_{\alpha x, \beta y}\left[\phi_{\lambda}\right]=\left.\frac{\partial f_{\alpha}\left[\left(\phi_{\lambda}\right)_{\lambda} i x\right]}{\delta \lambda^{\beta}(y)}\right|_{\lambda=0}
$$

gauge transformations farm a group, i.e.

$$
\begin{aligned}
& \quad\left(\phi_{\Lambda}\right)_{\lambda}=\phi_{\hat{\lambda}(\Lambda, \lambda)} \\
& \rightarrow \tilde{f}_{\alpha x, \beta y}\left[\phi_{\Lambda}\right]=\int \gamma_{\alpha x, \gamma z}[\phi, \Lambda] R_{\beta y}^{\gamma z}[\lambda] d^{4} z \\
& \text { where }\left.Y_{\alpha x, \gamma z}[\phi, \Lambda] \equiv \frac{\delta f_{\alpha}\left[\phi_{\pi} ; x\right]}{\delta \tilde{\Lambda}^{\gamma}(z)}\right|_{\tilde{\lambda}=\Lambda}=\frac{\delta f_{\alpha}\left[\phi_{\Lambda} ; x\right]}{\delta \Lambda^{\gamma}(z)}
\end{aligned}
$$

and $\mathcal{R}_{\beta y}^{\gamma z}[\Lambda]=\left.\frac{\delta \tilde{\Lambda}^{\gamma}\left(z_{i} \Lambda, \lambda\right)}{\delta \lambda^{\beta}(\gamma)}\right|_{\lambda=0}$
$\Rightarrow \operatorname{Det} \widetilde{f}\left[\phi_{\Lambda}\right]=\operatorname{Det} Y[\phi, \wedge] \operatorname{Det} R[\wedge]$
\uparrow
Jacobian of transformation from $\kappa^{\alpha}(x)$ to $\rho_{2}\left[\phi_{\Lambda} ; x\right]$

$$
\text { set } \rho(\Lambda)=\frac{1}{\operatorname{Det} R[\Lambda]}
$$

Then

$$
\begin{aligned}
C[\phi] & =\int\left[\prod_{\alpha, x} d \Lambda^{\alpha}(x)\right] \operatorname{Det} \gamma[\phi, \Lambda] B\left[f\left[\phi_{n}\right]\right] \\
& =\int\left[\prod_{\alpha, x} d f_{\alpha}(x)\right] B(f) \equiv C .
\end{aligned}
$$

\rightarrow independent of ϕ

$$
\begin{equation*}
\Rightarrow \quad I=\frac{C \int\left[\prod_{n, x} d \phi_{n}(x)\right] \mathscr{J}[\phi]}{\int\left[\prod_{\alpha, x} d \Lambda^{\alpha}(x)\right] \rho[\Lambda]} \tag{3}
\end{equation*}
$$

\rightarrow independent of $f_{x}\left(Q_{i} x\right)$
Remark:
Numerator integral is divergent os constant along all gange orbits

Denominator has the same infinite factor (volume of gauge group x volume of space time) \rightarrow both cancel

Using the Theorem, we can rewrite our path integral as follows

$$
\begin{aligned}
& \left\langle T\left\{O_{A} O_{B} \cdots\right\}\right\rangle_{V} \sim \int\left[\prod_{l, x} d \psi_{e}(x)\right]\left[\prod_{\alpha, \mu, x} d A_{\alpha}^{\mu}(x)\right] \\
& \times O_{A} O_{B} \cdots \exp \{i I+\{\operatorname{terms}\} B[f[A, q]] \operatorname{Det}+\vec{f}[A, q]
\end{aligned}
$$

for (almost) any choice of f_{α} and $B[f]$
Now take

$$
B[f]=\exp \left(-\frac{i}{2 \xi} \int d^{4} x f_{2}(x) f_{2}(x)\right)
$$

with arbitrary real parameter ξ.

$$
\rightarrow \mathcal{L}_{E F F}=\mathcal{L}-\frac{1}{2 \xi} f_{\alpha} f_{\alpha}
$$

choose $f_{\alpha}=\partial_{\mu} A_{\alpha}^{\mu} \quad$ (Lorentz gauge)
\rightarrow free vectar-boson part of effective action:

$$
\begin{aligned}
I_{o A}= & -\int d^{4} x\left[\frac{1}{4}\left(\partial_{\mu} A_{\alpha \nu}-\partial_{\nu} A_{\alpha \mu}\right)\left(\partial^{\mu} A_{\alpha}^{\nu}-\partial^{\nu} A_{\alpha}^{\mu}\right)\right. \\
& \left.+\frac{1}{2 \xi}\left(\partial_{\mu} A_{\alpha}^{\mu}\right)\left(\partial_{\nu} A_{\alpha}^{\nu}\right)+\varepsilon \text { terms }\right] \\
= & -\frac{1}{2} \int d^{4} x D_{\alpha \mu x_{1} \beta v y} A_{\alpha}^{\mu}(x) A_{\beta}^{\nu}(y),
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{\alpha \mu x, \beta \nu y}=\eta_{\mu \nu} \frac{\partial^{2}}{\partial x^{2} \partial y_{\lambda}} \delta^{4}(x-y) \delta_{\alpha \beta} \\
& -\left(1-\frac{1}{\xi}\right) \frac{\partial^{2}}{\partial x^{\mu} \partial y^{2}} \delta^{4}(x-y) \delta_{\alpha \beta}+\varepsilon \text { terms }
\end{aligned}
$$

$$
=(2 \pi)^{-4} \delta_{\alpha \beta} \int d^{4} p\left[\eta_{\mu v}\left(p^{2}-i \varepsilon\right)-\left(1-\frac{1}{\xi}\right) p_{\mu} p_{\nu}\right] e^{\dot{p} \cdot(x-y)}
$$

Taking the inverse gives propagator:

$$
\begin{aligned}
& \Delta_{\alpha \mu_{1} \beta \nu}(x, y)=\left(D^{-1}\right)_{\alpha \mu x, \beta \nu y} \\
& =(2 \pi)_{\delta_{\alpha \nu}}^{-4} \int d^{4} p\left[\eta_{\mu \nu}+(\xi-1) \frac{p_{\mu} p \nu}{p^{2}}\right] \frac{e^{i p \cdot(x-\gamma)}}{p^{2}-i \varepsilon}
\end{aligned}
$$

\rightarrow gives bak Landau gang for $\xi=0$
and Feyuman gauge for $\xi=1$
"generalized \}-gange"
Feynman rules:
trilinear interaction term in Z gives

$$
-\frac{1}{2} C_{\alpha \beta \gamma}\left(\partial_{\mu} A_{\alpha \nu}-\partial_{2} A_{\alpha \mu}\right) A_{\rho}^{\mu} A_{\gamma}^{\nu}
$$

\rightarrow contribution to integrand:

$$
i(2 \pi)^{4} \delta^{4}(p+q+k)\left[-i c_{\alpha \rho \gamma}\right]\left[p_{\nu} \eta_{n \lambda}-p_{\lambda} \eta_{\mu v}+q_{x} \eta_{2 \mu}-q_{2} \eta_{2 \lambda}+k_{n} \eta_{\eta_{2}}-k_{\nu} \eta_{\lambda 2}\right]
$$

The A^{4} interaction term in Z gives

$$
\begin{aligned}
& -\frac{1}{4} C_{i \alpha \beta} C_{\varepsilon \gamma \delta} A_{\alpha \mu} A_{\nu \nu} A_{\gamma}^{m} A_{j}^{\nu} \\
\rightarrow & i(2 \pi)^{4} \delta^{4}(p+q+k+\ell) \times\left[-C_{\varepsilon \alpha \beta} C_{\varepsilon \gamma \delta}\left(\eta_{\mu \rho} \eta_{\nu \sigma}-\eta_{\mu \sigma} \eta_{\nu \rho}\right)\right. \\
- & C_{\varepsilon \alpha \gamma} C_{\varepsilon \delta \beta}\left(\eta_{\mu \sigma} \eta_{\rho \nu}-\eta_{\mu \nu} \eta_{\sigma \rho}\right) \\
- & \left.C_{\varepsilon \alpha \partial} C_{\varepsilon \beta \gamma}\left(\eta_{\mu \nu} \eta_{\rho \sigma}-\eta_{\mu \rho} \eta_{\sigma \nu}\right)\right] .
\end{aligned}
$$

Ghosts:
Up to now we have not yet considered the effect of the factor Bet \tilde{F}.

Bet $\mathcal{F} \sim \int\left[\prod_{\alpha, x} d \omega_{\alpha}^{*}(x)\right]\left[\prod_{\alpha_{1} x} d \omega_{\alpha}(x)\right] \exp \left(i I_{G H}\right)$
where

$$
I_{G H} \equiv \int d^{4} x d^{4} y \omega_{\alpha}^{*}(x) \omega_{p}(y) \widetilde{f}_{\alpha, \beta y}
$$

Here ω_{α}^{*} and v_{α} are a set of anti-communting variables.

$$
\begin{aligned}
\rightarrow & \left\langle T\left\{\mathcal{O}_{A} \cdots\right\}\right\rangle_{V} \sim \int\left[\prod_{n, x} d \psi_{n}(x)\right]\left[\prod_{\alpha, \mu, x} d A_{\alpha \mu}(x)\right] \\
& \times\left[\prod_{\alpha, x} d \omega_{\alpha}(x) d \omega_{\alpha}^{*}(x)\right] \exp \left(i I_{M O D}\left[\psi, A, \omega, \omega^{*}\right]\right) O_{A} \cdots,
\end{aligned}
$$

where $I_{\text {MOD }}$ is

$$
I_{M O D}=\int d^{4} x\left[\mathscr{L}-\frac{1}{2 \xi} f_{\alpha} f_{\alpha}\right]+I_{G H}
$$

$\omega_{\alpha}, \omega_{\alpha}^{*}$ are called "ghosts" and "autighossts"
Feynman rules:
suppose $\bar{f}=F_{\odot}^{\circ}+\overline{F_{1}}$
field
independent field dependent
\rightarrow ghost propagator:

$$
\Delta_{\alpha \beta}(x, y)=-\left(\tilde{f}_{0}^{-1}\right)_{\alpha x, \beta y}
$$

vertices:

$$
I_{G H 1}^{\prime}=\int d^{4} x d^{4} y \omega_{\alpha}^{*}(x) \omega_{\beta}(y)\left(F_{1}\right)_{\alpha x, \beta y}
$$

Example:
In generalized ξ-gauge we have

$$
\begin{aligned}
f_{\alpha} & =\partial_{\mu} A_{\alpha}^{\mu} \\
\rightarrow A_{\alpha \lambda}^{\mu} & =A_{\alpha}^{\mu}+\partial^{\mu} \lambda_{\alpha}+C_{\alpha \gamma \beta} \lambda_{\beta} A_{\gamma}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { so that } \sigma_{\alpha x, \beta y}=\left.\frac{\delta \partial n A_{\lambda \lambda}^{m}(x)}{\delta \lambda_{\beta}(x)}\right|_{\lambda=0} \\
& =\square \delta^{4}(x-y)+C_{\alpha \gamma \beta} \frac{\partial}{\partial x^{\mu}}\left[A_{\gamma}^{n}(x) \delta^{4}(x-y)\right] \\
& \rightarrow\left(F_{0}\right)_{\alpha x, \beta y}=\square \delta^{4}(x-\gamma)_{\alpha \beta} \\
& \left(F_{1}\right)_{\alpha x, \beta y}=-C_{\alpha \beta \gamma} \frac{\partial}{\partial x^{\mu}}\left[A_{\gamma}^{\mu}(x) \delta^{4}(x-y)\right]
\end{aligned}
$$

\rightarrow ghost propagator:

$$
\Delta \alpha \beta(x, y)=\delta_{\alpha \beta}(2 \pi)^{-4} \int d^{4} p\left(p^{2}-i s\right)^{-1} e^{i p \cdot(x-y)}
$$

ghent vertex: $i(2 \pi)^{4} \delta^{4}(p+q+k) \times i p_{\mu} C_{\alpha \beta \gamma}$

